This article was downloaded by: [University of Haifa Library]

On: 09 August 2012, At: 14:12 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Effect of Natural Rubber Electrolytes Modified with CoCl₂, FeCl₂, SrCl₂, ZnCl₂ and Active Carbon

Tomasz Borowski ^a

^a Department of Chemistry and Water Environment Protection, Faculty of Natural Sciences, University of Szczecin, Szczecin, Poland

Version of record first published: 22 Sep 2010

To cite this article: Tomasz Borowski (2008): Effect of Natural Rubber Electrolytes Modified with CoCl₂, FeCl₂, SrCl₂, ZnCl₂ and Active Carbon, Molecular Crystals and Liquid Crystals, 484:1, 127/[493]-133/[499]

To link to this article: http://dx.doi.org/10.1080/15421400801904302

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be

independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 484, pp. 127/[493]-133/[499], 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421400801904302

Effect of Natural Rubber Electrolytes Modified with CoCl₂, FeCl₂, SrCl₂, ZnCl₂ and Active Carbon

Tomasz Borowski

Department of Chemistry and Water Environment Protection, Faculty of Natural Sciences, University of Szczecin, Szczecin, Poland

Natural rubber (NR), as a solvent and repository of electric charges, starts to gain these properties after adding to NR CoCl₂ or FeCl₂ or SrCl₂ or ZnCl₂ in the form of methanol solution with addition of active carbon. Electrical conductivity of such a NR – active carbon system with added NR CoCl₂ or FeCl₂ or SrCl₂ or ZnCl₂ equals to 10^{-6} to 10^{-5} S · cm⁻¹ at a room temperature of 293 K and a frequency of 10 kHz. The examined electrolytes were tested for the frequency range of 1 kHz to 25 kHz. These polymer electrolyte systems may find their application as materials for anticorrosive and antielectrostatic protection of fuel or hazardous material tanks.

Keywords: Active carbon (900 m2 · g-1 type); CoCl₂; FeCl₂; NR; Polymer electrolytes; SrCl₂; ZnCl₂

1. INTRODUCTION

At present, there are a lot of publications containing the examples of conductive polymer application. Polymers modified with lithium compounds [1–7], which are widely used as electrolytes in the production of polymer batteries [8,9], can be included among one of the greatest achievements. Polymer composites are also obtained with copper compounds [10], magnesium compounds [11], silver compounds [12] and sodium compounds [13–29], but to a lesser degree when compared with lithium compounds.

In the present article, a method is presented of obtaining polymer electrolytes from natural rubber. As a factor inducing electrical conductivity of polymer systems, CoCl₂, FeCl₂, SrCl₂ and ZnCl₂ (manufactured by Chempur[®], Poland) were used as well as active

Address correspondence to Tomasz Borowski, Department of Chemistry and Water Environment Protection, Faculty of Natural Sciences, University of Szczecin, ul. Felczaka 3C, Szczecin 71-412, Poland. E-mail: tomasz.borowski@poczta.onet.eu

128/[494] T. Borowski

carbon (also manufactured by Chempur[®], Poland) with a 900 m² active surface per one gram of active carbon.

Natural rubber (*Hevea brasiliensis*), which was used for obtaining polymer electrolytes, originated from a Para rubber tree plantation in Ranni, Kerala State, southwestern India. Natural rubber (NR) was collected and taken down from a Para rubber tree and imported to Poland in June 2006.

2. EXPERIMENTAL PROCEDURE

2.1. Synthesis of the System: NR + CoCl₂ or FeCl₂ or SrCl₂ or ZnCl₂ + Active Carbon

2.1.1. Stage 1 – Dissolution of Rubber Latex with Active Carbon Addition

Natural rubber is found in the form of rubber latex and oxidates quickly in the air, producing an elastic and stretchy caoutchouc (India-rubber). In order to avoid this process (since India-rubber dissolves more easily in the form of rubber latex), it was immediately added to toluene (99% pure). Toluene (manufactured by Spectrum Chemicals, Edayar, Cochin-683 502, India, Code: T 0105) was bought straight before collection of natural rubber in India. Natural rubber latex, preserved this way, was imported to Poland.

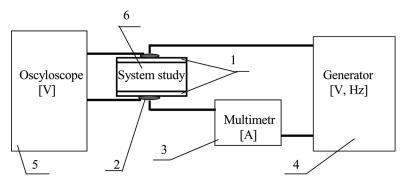
To work out a method of natural conductive rubber synthesis, it required in the first stage to precipitate rubber latex from toluene and to dissolve it again in toluene in order to make strictly specific mass recalculations. For precipitating the rubber latex, methanol (98%, manufactured by Chempur[®], Poland) was used. Rubber latex can be dissolved in petrol or benzene, but it best dissolves in toluene. For this purpose, toluene (99.5%, manufactured by Chempur[®], Poland) was used. Proportions of rubber latex dissolution are as follows: 3 grams of natural rubber were added to $40 \, \mathrm{cm}^3$ of toluene.

Such a rubber solution was left for 12 hours, shaking it from time to time. After 12 hours, natural rubber was again dissolved in toluene of a known concentration and of white oily consistency. Such a natural rubber solution was supplemented with active carbon (powdery form) in the amount of 0.5 g, 1 g, 1.5 g, 2 g, and 2.5 g.

2.1.2. Stage 2 - Synthesis of Polymer Electrolyte

Before obtaining a rubber electrolyte with active carbon addition, a maximum amount of CoCl₂ or FeCl₂ or SrCl₂ or ZnCl₂ possible for adding was determined. This amount was assayed and it equaled to

5 grams of CoCl₂ or FeCl₂ or SrCl₂ or ZnCl₂. After adding a larger amount than 5 grams of CoCl₂ or FeCl₂ or SrCl₂ or ZnCl₂, problems related to precipitation of rubber electrolytes in the form of gel from this solution occurred in all systems. These problems consisted in a non-homogenous form of gel.


 $CoCl_2$ or $FeCl_2$ or $SrCl_2$ or $ZnCl_2$ in the amount of 5 grams dissolved in $40\,cm^3$ methanol and added to the NR solution prepared earlier with addition of active carbon.

After stirring, rubber electrolyte precipitated from the solution almost at once. Such a rubber electrolyte system is left for one day after removal from the solution. After one day, the rubber system is subjected to electrical conductivity testing.

3. METHODS FOR MEASUREMENTS OF POLYMERIC ELECTROLYTES

To determine the electrolytic conductivity, the system obtained was subjected to testing using a variable current with a frequency varying between 1 Hz and 25 kHz. The following testing equipment was used for this purpose (Fig. 1)

- A HEWLETT PACKARD's alternator 33120 A 15 MHz A FUNCTION/ ARBITARY WAVEFORM Generator
- An AGILENT 3458 A 8½; DIGIT MULTIMETER
- A HEWLETT PACKARD's infinium oscilloscope 500 MHz 1 Gsa/s

FIGURE 1 Measuring diagram of the conductivity of the polymer system being tested: 1 – copper plates, 2 – junction of a conductor with a copper plate, 3 – multimeter, 4 – alternator, 5 – oscilloscope, 6 – polymeric electrolyte.

130/[496] T. Borowski

4. SUMMARY FINDINGS

In Tables 1, 2, 3 and 4 are presented the amounts of active carbon in methanol, which were added to natural rubber for a constant concentration of 3 g NR per 40 cm³ toluene and a variable amount of active

TABLE 1 Electrical Conductivity of Rubber Electrolyte in a Temperature Ranging from $273\,\mathrm{K}$ to $313\,\mathrm{K}$ for $\mathrm{NR} + \mathrm{CoCl_2} + \mathrm{Active}$ Carbon System

Quantity of active carbon	$\begin{array}{c} \text{Temperature} \\ 273\text{K} \\ [\text{S}\cdot\text{cm}^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 283K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 293K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 303K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 313K \\ [S\cdot cm^{-1}] \end{array}$
0,5 g 1 g 1,5 g 2 g 2,5 g	$10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 9,6 \cdot 10^{-6}$	$10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 9,6 \cdot 10^{-6}$	$10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 9,7 \cdot 10^{-6}$	$10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 9,8 \cdot 10^{-6}$	$10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 9.9 \cdot 10^{-6}$

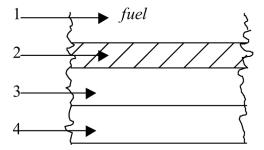
 $\begin{tabular}{ll} \textbf{TABLE 2} & Electrical Conductivity of Rubber Electrolyte in a Temperature Ranging from $273\,K$ to $313\,K$ for $NR+FeCl_2+Active Carbon System \\ \end{tabular}$

Quantity of active carbon	$\begin{array}{c} Temperature \\ 273K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 283K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 293K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 303K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} \text{Temperature} \\ 313\text{K} \\ [\text{S}\cdot\text{cm}^{-1}] \end{array}$
0,5 g 1 g 1,5 g 2 g 2,5 g	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 6.6 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 6.7 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 6.7 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 6.8 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 7.0 \cdot 10^{-5}$

TABLE 3 Electrical Conductivity of Rubber Electrolyte in a Temperature Ranging from $273\,\mathrm{K}$ to $313\,\mathrm{K}$ for $\mathrm{NR} + \mathrm{SrCl_2} + \mathrm{Active}$ Carbon System

Quantity of active carbon	$\begin{array}{c} Temperature \\ 273K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 283K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 293K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 303K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} \text{Temperature} \\ 313\text{K} \\ [\text{S}\cdot\text{cm}^{-1}] \end{array}$
0,5 g 1 g 1,5 g 2 g 2,5 g	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 4,5 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 4.6 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 4.7 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 4.7 \cdot 10^{-5}$	$10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-6} \\ 4.9 \cdot 10^{-5}$

Quantity of active carbon	$\begin{array}{c} Temperature \\ 273K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 283K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 293K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} Temperature \\ 303K \\ [S\cdot cm^{-1}] \end{array}$	$\begin{array}{c} \text{Temperature} \\ 313 \text{K} \\ [\text{S} \cdot \text{cm}^{-1}] \end{array}$
0,5 g	10^{-7}	10^{-7}	10^{-7}	10^{-7}	10^{-7}
1 g	10^{-7}	10^{-7}	10^{-7}	10^{-7}	10^{-7}
$1,5\mathrm{g}$	10^{-6}	10^{-6}	10^{-6}	10^{-6}	10^{-6}
$2\mathrm{g}$	10^{-6}	10^{-6}	10^{-6}	10^{-6}	10^{-6}
$2,5\mathrm{g}$	$7{,}3\cdot10^{-5}$	$7,3\cdot 10^{-5}$	$7,\!4\cdot10^{-5}$	$7.5\cdot10^{-5}$	$7,6\cdot10^{-5}$


TABLE 4 Electrical Conductivity of Rubber Electrolyte in a Temperature Ranging from 273 K to 313 K for NR + ZnCl₂ + Active Carbon System

carbon in a temperature ranging from $273\,\mathrm{K}$ to $313\,\mathrm{K}$. For each temperature, electrical conductivity was determined of the obtained rubber electrolytes with addition of active carbon and of the added electrolytes in methanol: $CoCl_2$, $FeCl_2$, $SrCl_2$, and $ZnCl_2$.

5. DISCUSSION

Rubber electrolyte systems after adding $CoCl_2$ or $FeCl_2$ or $SrCl_2$ or $ZnCl_2$ causes the whole system to become a conductive system. After adding $CoCl_2$ or $FeCl_2$ or $SrCl_2$ or $ZnCl_2$ to NR with active carbon, the electrical conductivity of such systems ranges from $10^{-6}-10^{-5}\,\mathrm{S\cdot cm^{-1}}$. For these four systems of rubber electrolytes, an optimum amount of the added equals to 5 grams.

It results for each rubber electrolyte system tested for its electrical conductivity that such rubber systems have low conductive properties.

FIGURE 2 Scheme of anti-static and anti-corrosion protection by the conductive polymer composite consisting in: 1 – fuel, 2 – metallic container, 3 – polymer electrolytes system: natural rubber + CoCl $_2$ or FeCl $_2$ or SrCl $_2$ or ZnCl $_2$, 4 – bitumen coating.

132/[498] T. Borowski

Such systems, however, show inconsiderable changes of electrical conductivity in a temperature ranging from 273 K to 313 K. One may think thus that such rubber systems are stabile in a variable temperature, although they have low values of electrical conductivity.

In Figure 2 is showed a diagram of container coating with conducting material. Metal container is covered with oily conductive rubber. Next, after two days, when conductive rubber has been cross-linked with atmospheric oxygen, it is being protected with bituminous coating with the same, or lower, hardness.

6. CONCLUSIONS

Such systems can find their application as materials for anticorrosive and antielectrostatic protection of tanks with inflammable and hazardous materials, as electrical conductivity of the tested systems changes inconsiderably in a variable temperature.

REFERENCES

- [1] Khorassani, A. & West, A. R. (1982). Solid State Ionics, 7, 1-8.
- [2] Poulsen, Finn W. (1981). Solid State Ionics, 2, 53-57.
- [3] Kamphorst, J. G. & Hellstrom, E. E. (1980). Solid State Ionics, 1, 187–197.
- [4] Ostrovskii, D., Torell, L. M., Appetecchi, G. B., & Scrosati, B. (1998). Solid State Ionics, 106, 19–24.
- [5] Deepa, M., Sharma, N., & Agnihotry, S. A. (2002). Solid State Ionics, 152–153, 253–258.
- [6] Glasse, M. D., Idris, R., Latham, R. J., Linford, R. G., & Schlindwein, W. S. (2002). Solid State Ionics, 147, 289–294.
- [7] Idris, R., Glasse, M. D., Latham, R. J., Linford, R. G., & Schlindwein, W. S. (2001). Journal of Power Sources, 94, 206–211.
- [8] Nashiura, M., Kono, M., Namegaya, N., & Matsuda, Y. (1998). Electrochem. Solid State Lett., 1(1), 246–248.
- [9] Kim, D. (2000). Journal of Power Sources, 87, 78-83.
- [10] Lewandowski, A., Stepniak, I., & Grzybkowski, W. (2001). Solid State Ionics, 143, 425–432.
- [11] Noto, Vito de. & Vittadello, M. (2002). Solid State Ionics, 147, 309-316.
- [12] Gargarczyk, J. E., Machowski, P., Wasiucionek, M., & Jakubowski, W. (2003). Solid State Ionics, 157, 269–273.
- [13] Himba, T. (1983). Solid State Ionics, 9-10, 1101-1105.
- [14] Gomes Correia, S. M., de Zea Bermudez, V., & Silva, M. M. (2003). Solid State Ionics, 156, 85–93.
- [15] Borowski, T., Karczmarek, J., Kwaśniewski, J., & Oleksy, M. (2004). Chemik, 11, 447–450, Poland.
- [16] Borowski, T., Karczmarek, J., Kwaśniewski, J., & Oleksy, M., Hryniewicz, T. (2005). Przem Chem., No 08, 607–610.
- [17] Borowski, T. & Sienicki, W. (2003). Mat. II Conference Polymers, Poznan, Poland.

- [18] Borowski, Tomasz. & Sienicki, W. (2003). Mat. XLVI Congress Science PSC, Lublin, p. 700, Poland.
- [19] Borowki, T. & Hryniewicz, T. (2004). Mat. VII Conference of Polish Academy Science, Slupsk, pp. 79–124, Poland.
- [20] Hryniewicz, T. & Borowski, T. (2004). International Conference on Vehicles Alternative Fuel Systems and Environmental Protection, No.: 182, Dublin, Ireland.
- [21] Borowski, T. & Hryniewicz, T. patent No P 366682 for day 2004.03.29, Poland.
- [22] Borowski, T. & Hryniewicz, T. patent No P 367316 for day 2004.04.16, Poland.
- [23] Borowski, T. patent No P 382002 for day 2007.03.19, Poland.
- [24] Borowski, T. patent No P 382003 for day 2007.03.19, Poland.
- [25] Borowski, T. patent No P 382004 for day 2007.03.19, Poland.
- [26] Borowski, T. IX International Conference on Frontiers of Polymers and Advanced Materials, Cracow, (Poland), 8–12 July 2007, p. 328.
- [27] Borowski, T. (2007). Journal of Power Sources, 172, 988–990.
- [28] Borowski, T. (2008). Materials Letters, 62, 1382–1384.
- [29] Borowski, T. (2008). Asian Journal of Chemistry, 20(4), 3083-3088.